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Using analytical theory and simulations, we assess the impact of quantum effects on non-linear

wave-particle interactions in quantum plasmas. We more specifically focus on the resonant

interaction between Langmuir waves and electrons, which, in classical plasmas, lead to particle

trapping. Two regimes are identified depending on the difference between the time scale of

oscillation tBðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=eEk

p
of a trapped electron and the quantum time scale tqðkÞ ¼ 2m=�hk2

related to recoil effect, where E and k are the wave amplitude and wave vector. In the classical-

like regime, tBðkÞ < tqðkÞ, resonant electrons are trapped in the wave troughs and greatly affect

the evolution of the system long before the wave has had time to Landau damp by a large

amount according to linear theory. In the quantum regime, tBðkÞ > tqðkÞ, particle trapping is

hampered by the finite recoil imparted to resonant electrons in their interactions with plasmons.
VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4873378]

The notion of wave-particle interactions, the couplings

between collective and individual particle behaviors, is funda-

mental to our comprehension of plasma phenomenology.1–4

Landau damping, the collisionless damping of an electron

plasma (Langmuir) wave, is the paradigmatic illustration of

these interactions.5 Resonant electrons with velocities suffi-

ciently close to the wave phase velocity experience a nearly

constant force and so can effectively exchange energy with

the wave. For waves of small amplitude about a uniform equi-

librium, the energy transfers overall result in the exponential

decay of the wave amplitude in time at a rate cðkÞ, where k is

the wave number. In general, this linear theory prediction

breaks down after a time OðtBðkÞÞ beyond which particles can

get trapped and oscillate at a bounce frequency xBðkÞ
¼ 1=tBðkÞ in the wave troughs. Landau damping is effective

provided cðkÞ � xBðkÞ, whereas when cðkÞ � xBðkÞ, the

damping saturates and the wave amplitude remains finite

(neglecting collisions).6,7

The question arises as to how wave-particle interactions

are modified when the quantum nature of the electrons can

no longer be ignored. Such is the case when the electrons’

thermal energy kBT is of the order of or smaller than their

Fermi energy EF ¼ �h2

2m ð3p2nÞ1=3
(n and m are the electron

density and mass). The physics of quantum plasmas (e.g., of

the warm dense matter regime) is a frontier of high-energy

density physics with relevance to many laboratory experi-

ments and to astrophysics.8 This field of research is being

emboldened by new experimental facilities and high-

performance computing. Nonlinear effects such as wave-

particle couplings have been ignored and studies rely on lin-

ear response theory to model the experimental measurements

(e.g., the X-ray Thomson scattering cross section9). In view

of their significance in traditional plasmas, it is compelling

to consider the nature and the role that wave-particle cou-

plings take on in quantum plasmas. Few studies of non-

linear effects in the quantum regime have been reported.10

Of particular significance is the work by Suh et al.11 who

report simulations of the non-linear Landau damping using

the one-dimensional quantum Liouville-Poisson system;

they found that quantum effects can disrupt the hole forma-

tion in phase-space that, in the classical case, coincides with

that saturation of Landau damping due to particle trapping.

In this paper, we examine the onset of resonant particle trap-

ping in small amplitude plasma waves across quantum

degeneracy regimes.

To discriminate between quantum mechanical and quan-

tum statistical effects, we systematically report the results

for three models of electrons: quantum (q), semi-classical

(sc), and classical (c) (a subscript is sometimes used to indi-

cate a result pertaining to a specific model, e.g., A¼scB).

The classical description is commonly used in plasma

physics, where both dynamics and statistics are classical. For

semi-classical electrons, the dynamics is classical (wave-me-

chanical effects like diffraction are overlooked), but the fer-

mionic (Fermi-Dirac) statistics substitutes the Boltzmann

statistics. The quantum description includes both quantum

statistics and quantum mechanics by ascribing wave-like

attributes to the electrons. In each case, we assume that ions

do not participate in the high-frequency plasma oscillations

and act as a uniform neutralizing background. Moreover,

collisions between individual electrons are omitted from the

analysis12 and the plasma is described within the collective,

mean-field approximation. We denote by xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2n=�0m

p
the electron plasma frequency, a ¼ ð3=4pnÞ1=3

the Wigner-

Seitz radius, rs ¼¼ a=aB ¼ 1 (aB Bohr radius) the reduced

density, h ¼ kBT=EF the degeneracy parameter, fFDðpÞ ¼
1=½1þ expððp2=2m� lÞ=kBTÞ� the Fermi-Dirac distribution,

and fMBðpÞ ¼ n kBT=2pmð Þ3=2e�p2=2mkBT the Maxwell-

Boltzmann distribution.

First, we evaluate the quantum effects on the basis of

the usual trapping threshold criterion cðkÞ ¼ xBðkÞ for reso-

nant electrons in a plasma wave created by an initial density

perturbation dnðrÞ=n ¼ � cosðkxÞ. In the linear regime, the

wave electric field Eðr; tÞ ¼ E0e�cðkÞtsin kx� xðkÞtð Þx̂. Here,

E0 ¼ �en�=�0k, and xðkÞ and cðkÞ satisfy the dispersion

equation
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�ðk;xðkÞ � icðkÞÞ ¼ 0 ; (1)

where �ðk; zÞ ¼ 1� e2

�0k2 v0ðk; zÞ is the analytic continuation

of retarded dielectric function in the random-phase approxi-

mation (RPA), and v0 is the free-electron density response

function13,14

v0ðk; zÞ¼q �
ð

dp
f0ðpþ �hk=2Þ � f0ðp� �hk=2Þ

�hz� �hk � p=m
(2)

¼sc;c �
ð

dp
k � @@p

f0ðpÞ
z� k � p=m

; (3)

with f0¼q;sc fFD¼cfMB. The bounce frequency is

xBðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�eE0k=m

p
¼ xp

ffiffi
�
p

.6 To determine cðkÞ, we solve

numerically the dispersion relation for each electron model.

The results for xðkÞ and cðkÞ for rs¼ 1 and several degener-

acy parameters h across degeneracy regimes are shown in

Fig. 1 as a function of the dimensionless wave-vector k=ksc,

where ks ¼ �e2v0ð0; 0Þ=�0 is the inverse screening length.

Also shown in Fig. 1 is the long wavelength (Bohm-Gross)

limit

x2ðkÞ ¼ x2
p 1þ a2k2 þ o k2ð Þ
� �

; cðkÞ ¼ Im � k;xðkÞð Þ
@ Re �
@x k;xðkÞð Þ

;

(4)

where a2¼q;sc2
I3=2ðlÞ
I1=2ðlÞ

kBT
m ¼c 3kBT

m , where IaðyÞ¼
Ð1

0
xa

1þexpðx�yÞdx

is the Fermi integral. We see that Landau damping is less and

less effective as one penetrates the quantum regime: for a

given wave number k, cqðkÞ< cscðkÞ< cclðkÞ and the gap

between these rates increases with decreasing h. Thus, in light

of the usual trapping criterion cðkÞ � xBðkÞ, one expects that

resonant electrons in quantum plasmas are more readily prone

to trapping than in classical plasmas. Moreover, Fig. 1(b)

shows that, while the quantum and semiclassical descriptions

are equal at small k, they markedly differ at intermediate k:

this suggests that the electron wave-like character signifi-

cantly modifies the nature of traditional wave-particle

interactions.

To support the previous analysis, we perform numerical

simulations for semi-classical electrons across the quantum

degeneracy regimes. Like in traditional plasma physics,

electrons are modeled by a phase-space distribution f(r, p,t)
satisfying the Vlasov-Poisson equations

@f

@t
¼ � p

m
� rrf þrrv � rpf ; (5a)

r2vðr; tÞ ¼ e

�0

ð
dpf ðr; p; tÞ � n

� �
: (5b)

But unlike in plasma physics, we use an initial condition

consistent with the Pauli principle, namely,

f ðr; p; t ¼ 0Þ ¼ 1þ � cos kxð Þð ÞfFDðpÞ ; (6)

which describes a sinusoidal density perturbation (wave vec-

tor k ¼ kx̂, amplitude �) around the homogenous Fermi-

Dirac equilibrium.15 Note that the fermionic character is

preserved since the Vlasov dynamics (5a) conserves phase-

space volumes. Our numerical solution uses particle-in-cell

techniques with parameters carefully chosen to ensure

energy and entropy conservation (and hence the fermionic

character), and to alleviate spurious noise due to particle dis-

creteness.16 Figure 2 shows the results of simulations for the

time evolution of the Fourier component of the electric field

Eðk; tÞ ¼ �ik~vðk; tÞ obtained for rs¼ 1, � ¼ 0:005; h
¼ 0:01; h ¼ 0:1 (degenerate), and 7.5 (classical regime).

Results are shown for several wave-vectors k around the

threshold value k�ðhÞ defined such as cscðk�Þ ¼ xBðk�Þ and

below which the usual trapping criterion c < xB is satisfied;

in Fig. 1, k* is determined by the intersection of the horizon-

tal dashed line with the black line, giving k�ðhÞ=ks

¼ 0:4; 0:97 and 2.9 for h ¼ 7:5, 0.1, and 0.01. For k > k�,
after a fast transient time due to phase mixing, the electric

field oscillates and its envelope decays exponentially in time

with frequency and damping time in excellent agreement

FIG. 1. Plasma wave dispersion relation (left) and linear Landau damping

rates (right) for reduced density rs¼ 1 and degeneracy parameters between

h ¼ 7:5 (nearly classical) to h ¼ 0:1 (strongly degenerate), obtained by

numerically solving Eq. (1) for quantum (red lines) and semiclassical

(black). In both figures, the dashed lines corresponds to the Bohm-Gross

limit (4) for quantum electrons, the blue crosses to numerical semi-classical

PIC simulations, and the curves have been shifted vertically (left) and hori-

zontally (right) for clarity (in the right figure, a vertical arrow indicates the

origin of the horizontal axis). For h ¼ 7:5, the quantum, semi-classical, and

classical (not shown) results are indistinguishable to within the thickness of

the curve.
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with linear theory (see blue crosses in Fig. 1). In contrast,

when k < k�, the wave amplitude displays a preliminary ex-

ponential Landau decay (again in remarkable accordance

with linear theory as shown in Fig. 1), but then the latter sat-

urates: the amplitude starts oscillating on a small frequency

time scale, the amplitude of which increases with decreasing

k. For k� k�, in the time asymptotic limit, the oscillation in

the electric field envelope disappears and the wave goes on

propagating at nearly constant amplitude (e.g., see Fig. 2 for

h ¼ 0:01). These are signatures of trapping:6,17 nonlinear

effects stop the damping at a threshold in agreement with the

theory, even for small amplitude waves, long before the

wave has had a chance to damp by a substantial amount

according to linear theory.

We now investigate whether quantum mechanics affects

the usual trapping criterion. To facilitate the comparison

between the quantum and classical descriptions, we work

with the Wigner representation in which the system’s state is

described by a phase-space function f(r, p, t), which, in

many ways, resembles the classical distribution:10,18

for example, the local particle density n ¼
Ð

dp f , momen-

tum density P ¼
Ð

dpp f , and kinetic energy density

K ¼
Ð

dp
p2

2m f . In the mean-field approximation

@f

@t
¼ � p

m
� @f

@r
þ I½f �; (7)

where

I½f � ¼ q
i

�h

ð
dp0
ð

dy

ð2pÞ3
e�iy�p0f ðr; pþ p0; tÞ

� ½vðrþ �hy=2Þ � vðr� �hy=2Þ� (8a)

¼sc;c
@v
@r
� @f

@p
ðcf:Eq:ð5aÞÞ; (8b)

where v satisfies Eq. (5b).19 Following O’Neil,6 we deter-

mine the onset of particle trapping by looking at the break-

down of the linear approximation to the theory Eq. (8). We

consider the case in which a monochromatic plasma wave is

excited with Eðr; tÞ ¼ EðtÞsin k � r� xðkÞtð Þx̂, as produced

by the initial condition (6) with f0¼q;sc fFD¼c fMB. To make

analytical predictions, we assume that the wave amplitude

remains constant on time scale t < 1=cðkÞ, i.e., E(t)¼E0 for

t < 1=cðkÞ. Under these conditions, the linear solution of Eq.

(7) is

f ðr; p; tÞ ¼ 1þ �cos k � ðr� p t=mÞð Þ½ �f0ðpÞ

þ eE0

k

cos k � r� xðkÞtð Þ � cos k � r� k � p
m

t

� �

xðkÞ � k � p
m

;

�

1

�h
f0 pþ �hk

2

� �
� f0 p� �hk

2

� �� �
qð Þ

k � @f0ðpÞ
@p

sc; cð Þ

8>>>><
>>>>:

(9)

with f0¼q;sc fFD¼c fMB; the first term describes the free-

streaming of the initial perturbation, while the second term

originates from the electron-wave couplings. For momenta

such that k�p
m ¼ xðkÞ, the linear solution (9) exhibits a secu-

larity proportional to t and we find

FIG. 2. Temporal evolution of the self-consistent electric field E(k, t) for

semi-classical plasmas at reduced density rs¼ 1 and degeneracy h ¼ 7:5
(left), h ¼ 0:1 (middle), and h ¼ 0:01 (right), following an initial density

perturbation nðr; tÞ=n ¼ 0:005 cosðkxÞ at wave-vectors k distributed around

the trapping threshold value k�ðhÞ (see Fig. 1). Note that over the time dura-

tion of the plot for h ¼ 7:5 and 0.1, the plasma oscillations are undistin-

guishable. Measured initial Landau decay rates and wave frequencies shown

in Fig. 1 (blue crosses) are in excellent agreement with the dispersion rela-

tion results.
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I½f � � I½f0�
I½f0�

ðr; p ¼; tÞ¼q sin k � r� xtð Þ f0ðpþ �hkÞ � 2f0ðpÞ þ f0ðp� �hkÞ
f0ðpþ �hk=2Þ � f0ðp� �hk=2Þ

eE0

k

sin �hk2t=2m
� �
�h2k2=2m

þ cos k � r� xtð Þ f0ðpþ �hkÞ � f0ðp� �hkÞ
f0ðpþ �hk=2Þ � f0ðp� �hk=2Þ

eE0

k

cos �hk2t=2m
� �

� 1

�h2k2=2m

" # (10a)

¼ sc;csin k � r� xtð Þ @
2f0=@

2px

@f0=@px
eE0tþ cos k � r� xtð Þ eE0k

m

t2

2
: (10b)

For classical electrons, Eq. (10b) exhibits the usual result:6 as t
approaches tBðkÞ ¼ m=ekEð Þ1=2

(see second term proportional

to t2), dI ¼ I½f � � I½f0� outgrows the linear term and the linear

approximation breaks down. For semi-classical electrons, Eq.

(10b) shows that the same result holds when quantum statistics

alone is accounted for. The quantum result (10a), on the other

hand, displays an additional time scale tqðkÞ ¼ 2m=�hk2. For

tqðkÞ � tBðkÞ, i.e., for density amplitudes

�� ðakÞ4

12rs
	 ��ðk; rsÞ / k4=n; (11)

the quantum result (10a) reduces to the classical (10b) for

times t of order tB(k): the linear approximation breaks down

as t approaches tB(k). For tqðkÞ � tBðkÞ or � � ��ðk; rsÞ,
however, the term within brackets limits the growth of dI
and the linear approximation does not break down as t
approaches tB(k): the usual trapping criterion does not hold.

In fact, as we shall explain, the recoil phenomenon due to

the interaction of resonant electrons with plasmons prevents

particle trapping from happening.

To interpret physically the new time scale tq(k), we find it

useful to go over from the wave description of plasma waves to

the particle description in terms of plasmons.20 The latter is not

widely used in plasma physics, perhaps because typical electro-

static waves contain a huge number of these elementary excita-

tions. Yet, as we argue here, plasmons provide an insightful

alternative picture of Landau damping and particle trapping

valid for both quantum and classical electrons. The notion of

plasmons, first derived from the collective coordinate method

of Bohm and Pines,21 is readily recovered within our approach

as follows. We calculate the rate of change in kinetic energy

hKi and momentum hPi per wavelength 2p=k from the linear

solution (9); in the long-wavelength limit, we find22

dhKi
dt
¼ 2cðkÞhEi; dhPi

dt
¼ 2cðkÞhEi k

xðkÞ ; (12)

where hEi ¼ �0E2
0=4 is the electrostatic wave energy per

wavelength, and

cðkÞ¼q
2pnk

�hx3
p

gFD
mxðkÞ

k
� �hk

2

� �
� gFD

mxðkÞ
k
þ�hk

2

� �� �

¼sc �
2pnk2

x3
p

g0FD

mxðkÞ
k

� �

¼c �
2pnk2

x3
p

g0MB

mxðkÞ
k

� �
; (13)

is the explicit expression of c given in Eq. (4) with

gðpxÞ ¼
Ð

dpydpzf ðpx; py; pzÞ. Moreover, energy conservation

implies dhKi=dt ¼ �dhEi=dt. By defining the number of

energy quanta N k ¼ hEi=�hxðkÞ in the wave, the previous

rate equations become

dhKi
dt
¼ ��hxðkÞ dN k

dt
;

dhPi
dt
¼ ��hk

dN k

dt
; (14)

and

dN k

dt
¼ �2cðkÞN k : (15)

Thus, the quantum of plasma wave behaves as a quasi-particle,

the plasmon: the increase or decrease in the wave energy by

one quantum is accompanied by the absorption or emission of

electron energy �hxðkÞ and momentum �hk. Equation (15)

describes the stimulated absorption and emission of plasmons

leading to the Landau damping of the plasma wave at the rate

cðkÞ (the factor 2 in Eq. (15) arises because N k is proportional

to the square of the wave amplitude). Note that in Eq. (15), we

have omitted the term describing the (spontaneous) plasmon

emission by electrons in the form a wake behind them, which

requires fast electrons because xðkÞ=k is usually large, and is

thus negligible at or near equilibrium.23

We now return to our purpose in light of the plasmon

concept. From momentum and energy conservation, for an

electron to absorb (þ) or emit (�) a plasmon ð�hk; �hxðkÞÞ, its

momentum p must satisfy

p ¼ p � k
k
¼q m

xðkÞ
k

7
�hk

2
¼sc;c m

xðkÞ
k

; (16)

in the process, its energy changes by

6 �hxðkÞ ¼ q 6 �hk � p

m
þ �h2k2

2m
¼sc;c 6 �hk � p

m
: (17)

This simple calculation reveals two important effects of the

wave-like, diffractive nature of electrons. First, the resonant

momentum condition is shifted by 7 �hk=2 with respect to

the classical and semi-classical conditions; this in turn

affects the relation of the Landau damping rate to the shape

of the distribution function around mxðkÞ=k as found in Eq.

(13) and Fig. 1. Second, the energy transfer differs by the

recoil energy ErecðkÞ ¼ �h2k2

2m associated with the momentum

transfer 6�hk. The quantum time-scale found earlier is
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intimately related to recoil since tqðkÞ ¼ �h=ErecðkÞ and the

two regimes delineated by �� can be understood as follows.

In the wave frame, a trapped electron oscillates in a potential

well of height VtrapðkÞ ¼ 2eE0=k such that
VtrapðkÞ
ErecðkÞ ¼

tqðkÞ
tBðkÞ

	 
2

.

Thus, for amplitudes � smaller than

��ðk; rsÞ; VtrapðkÞ 
 ErecðkÞ, and the recoil of a resonant elec-

tron that absorbs or emits a plasmon, kicks it outside the

potential well: quantum diffraction lowers the trapping life-

time of resonant particles and deteriorates trapping overall.

When Eq. (11) is satisfied, VtrapðkÞ > ErecðkÞ, most elec-

trons can remain trapped by the wave and the usual theory

remains qualitatively valid.

In summary, our study reveals two distinct regimes for the

collisionless damping of a monochromatic plasma wave in

quantum plasmas. First, a classical-like regime, where the non-

linear trapped-particle dynamics of resonant electrons, qualita-

tively akin to that well-known in classical plasmas, sets in long

before the wave has had time to damp by a substantial amount.

Second, a truly quantum regime, where particle trapping is

hampered by the finite recoil imparted to resonant electrons in

their interactions with the wave. Given the importance of wave-

particle couplings in traditional plasmas, further work to com-

prehend them in quantum plasmas may be beneficial both from

a fundamental physics standpoint and as a practical matter.
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